Abstract
ABSTRACTUsing a limited set of residual stress measurements acquired by neutron diffraction and an equilibrium‐based, weighted least square algorithm to reconstruct the complete residual stress tensor field from the measured residual stress data, the effect of weld residual stress on fatigue crack propagation is investigated for 2024‐T351 aluminium alloy plate joined by friction stir welding. Through incorporation of the least squares, complete equilibrated residual stress field into a finite element model of the Friction Stir Weld (FSW) region, progressive crack growth along a direction perpendicular to the welding line is simulated as part of the analysis. Both the residual stress redistribution and the stress intensity factor due to the residual stress field, Kres, are calculated during the crack extension process.Results show that (a) incorporation of the complete, self‐equilibrated residual stress field into a finite element (FE) model of the specimen provides a robust, hybrid approach for assessing the importance of residual stress on fatigue crack propagation, (b) the calculated stress‐intensity factor due to the residual stress field, Kres, has the same trend as measured experimentally by the ‘cut‐compliance method’ and (c) the da/dN results are readily explained with reference to the effect of the residual stress field on the applied stress intensity factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.