Abstract
The activation of the coupling factor-latent ATPase enzyme by tryptic proteolysis may resemble the activation of many proenzymes by limited proteolysis. The beta (53 000 dalton) subunit of solubilized coupling factor-latent ATPase from Mycobacterium phlei was selectively lost in some trypsin-treated samples. Since a concomitant loss of ATPase activity was not observed, the beta subunit may not be essential for ATPase catalytic activity. Treatment of solublized coupling factor with chymotrypsin rapidly produced an A′-type (61 000 dalton) species from the native alpha (64 000 dalton) subunits with partial activation of the ATPase enzyme. Secondary chymotryptic cleavage yielded an A″-type (58 000 dalton) species and a less-active enzyme. Storage of fresh coupling factor samples at −20°C in the presence of 4 mM MgCl 2 with several freeze-thaw cycles resulted in loss of ATPase activity without apparent change in alpha subunit structure. Storage at 4°C in the presence or absence of MgCl 2 both decreased ATPase activity and generated A′-type alpha subunit species. Since presence of phenylmethylsulfonyl fluoride prevented these changes, an unknown protease was suspected. The peptide bonds first cleaved by trypsin, chymotrypsin, and the unknown protease are all apparently located within the same small segment of alpha subunit polypeptide chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.