Abstract

Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30–40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations.

Highlights

  • Marine modular organisms exhibit a large morphological variability, with phenotypic plasticity a likely source of this variability

  • The present study provides genetic data supporting the differentiation of E singularis in two morphotypes differing in color, colony shape and sclerites features described by Théodor [17] and Gori et al [16]

  • It has been hypothesized that deep coral reefs can potentially act as refugia for several coral species [9], fostering the re-colonization of shallow areas after catastrophic events [68]

Read more

Summary

Introduction

Marine modular organisms exhibit a large morphological variability, with phenotypic plasticity a likely source of this variability (see [1] for a review). In corals and gorgonians variability has led to considerable confusion regarding species boundaries and taxonomy. Genetic investigations can contribute to the recognition of cryptic species boundaries and population identification. The integrative approach can help to resolve and ⁄or revise taxonomic affinities among closely related species [2]). Many environmental parameters (e.g. hydrodynamics, salinity, irradiance, trophic resources) can influence organisms’ morphology and drive genetic differentiation [3]. Each parameter exerts its influence independently, but they may act synergistically and their effect is more evident along environmental gradients (e.g. latitude, depth). It is widely accepted that the depth gradient, integrating several environmental parameters (e.g. temperature, light, hydrodynamics), may affect population structure, colony morphology, and connectivity patterns of corals and gorgonians [4,5,6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.