Abstract
Limited automata are one-tape Turing machines that are allowed to rewrite the content of any tape cell only in the first d visits, for a fixed constant d. When \(d=1\) these models characterize regular languages. An exponential gap between the size of limited automata accepting unary languages and the size of equivalent finite automata is proved. Since a similar gap was already known from unary context-free grammars to finite automata, also the conversion of such grammars into limited automata is investigated. It is proved that from each unary context-free grammar it is possible to obtain an equivalent 1-limited automaton whose description has a size which is polynomial in the size of the grammar. Furthermore, despite the exponential gap between the sizes of limited automata and of equivalent unary finite automata, there are unary regular languages for which d-limited automata cannot be significantly smaller than equivalent finite automata, for any arbitrarily large d.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.