Abstract

The limited-angle cone-beam Computed Tomography (CT) is often used in C-arm for clinical diagnosis with the advantages of cheap cost and radiation dose reduction. However, due to incomplete projection data, the 3-dimensional CT images reconstructed by conventional methods, such as the Feldkamp, Davis and Kres (FDK) algorithm [1], suffer from heavy artifacts and missing features. In this paper, we propose a novel pipeline of neural networks jointly by a FDK-based neural network revisited from Würfl et al.'s work [2] and an image domain U-Net to enhance the 3-dimensional reconstruction quality for limited projection sinogram less than 180 degrees, i.e. 145 degrees in our work. Experimental results, on simulated projections of real-scan CTs, show that the proposed pipeline can reduce some of the major artifacts caused by the limited views while keep the key features, with a 16.60% improvement than Würfl et al.'s work on peak signal-to-noise ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.