Abstract

Recently, a teleportation scheme using a two-mode squeezed state to teleport a photonic qubit, so called a “hybrid” approach, has been suggested and experimentally demonstrated as a candidate to overcome the limitations of all-optical quantum information processing. We find, however, that there exists the upper bound of fidelity when teleporting a photonic qubit via a two-mode squeezed channel under a lossy environment. The increase of photon loss decreases this bound, and teleportation better than this limit is impossible even when the squeezing degree of the teleportation channel becomes infinity. Our result indicates that the hybrid scheme can be valid for fault-tolerant quantum computing only when the photon loss rate can be suppressed under a certain limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call