Abstract

Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.