Abstract
Complexity of shallow (one-hidden-layer) networks representing finite multivariate mappings is investigated. Lower bounds are derived on growth of numbers of network units and sizes of output weights in terms of variational norms of mappings to be represented. Probability distributions of mappings whose computations require large networks are described. It is shown that due to geometrical properties of high-dimensional Euclidean spaces, representation of almost any randomly chosen function on a sufficiently large domain by a shallow network with perceptrons requires untractably large network. Concrete examples of such functions are constructed using Hadamard matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.