Abstract
In this study, two double-anode microbial fuel cells (MFCs) were connected in series for degradation of the azo dye reactive brilliant red X-3B. After the series connection, the electricity generation of one of the MFCs decreased, and the other was not affected too much. Due to the special structure in the double-anode MFC reduced the imbalanced performance between the MFC units, the occurrence of voltage reversal was limited. The removal efficiencies in two MFC reactors were not consistent after the series connection, the results showed that the MFC with the reduced electricity generation had the higher removal efficiencies, it was 12.90, 11.66, and 40.05% higher than in the MFC in which the power generation capacity was not affected after the series connection, the MFC without serial connection, and the control group, respectively. Meanwhile, the microbial communities related to the degradation of refractory organic compounds increased and related to electricity generation decreased in the MFC with the reduced electricity generation, the changes of the microbial communities were consistent with its electricity generation and the removal efficiencies. The degradation products in the effluent from two MFC units showed that had the products generated from the MFC with the reduced electricity generation had simpler structures comparing the other MFC unit.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have