Abstract

In the random geometric graph G(n,rn), n vertices are placed randomly in Euclidean d-space and edges are added between any pair of vertices distant at most rn from each other. We establish strong laws of large numbers (LLNs) for a large class of graph parameters, evaluated for G(n,rn) in the thermodynamic limit with nrnd= const., and also in the dense limit with nrnd→∞, rn→0. Examples include domination number, independence number, clique-covering number, eternal domination number and triangle packing number. The general theory is based on certain subadditivity and superadditivity properties, and also yields LLNs for other functionals such as the minimum weight for the traveling salesman, spanning tree, matching, bipartite matching and bipartite traveling salesman problems, for a general class of weight functions with at most polynomial growth of order d−ε, under thermodynamic scaling of the distance parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.