Abstract
Graph theory is a delightful playground for the exploration of proof techniques in discrete mathematics and its results have applications in many areas of the computing, social, and natural sciences. The fastest growing area within graph theory is the study of domination and Independence numbers. Domination number is the cardinality of a minimum dominating set of a graph. Independence number is the maximal cardinality of an independent set of vertices of a graph. The concept of Fibonacci numbers of graphs was first introduced by Prodinger and Tichy in 1982. The Fibonacci numbers of a graph is the number of independent vertex subsets. In this paper, introduce the identities of domination, independence and Fibonacci numbers of graphs containing vertex-disjoint cycles and edge-disjoint cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational and Applied Mathematics & Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.