Abstract
This article considers multivariate linear processes whose components are either short- or long-range dependent. The functional central limit theorems for the sample mean and the sample autocovariances for these processes are investigated, paying special attention to the mixed cases of short- and long-range dependent series. The resulting limit processes can involve multivariate Brownian motion marginals, operator fractional Brownian motions and matrix-valued versions of the so-called Rosenblatt process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.