Abstract
We study the sample-path moderate deviation principle (MDP) for shot noise processes in the high intensity regime. The shot noise processes have a renewal arrival process, non-stationary noises (with arrival-time dependent distributions) and a general shot response function of the noises. The rate function in the MDP exhibits a memory phenomenon in this asymptotic regime, which is in contrast with that in the conventional time–space scaling regime. To prove the sample-path MDP, we first establish that this is equivalent to establishing the sample-path MDP of another process that is easier to study. We prove its finite-dimensional MDP and then establish the exponential tightness under the Skorohod J1 topology. This results in the sample-path MDP in D under the Skorohod J1 topology with a rate function that is derived from the rate function in the finite-dimensional MDP using the tools of reproducing kernel Hilbert space. In the proofs, because of the non-stationarity of shot noise process, we establish a new exponential maximal inequality and use it to prove exponential tightness and the aforementioned equivalence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.