Abstract
We consider a discrete-time quantum walk W_{t,\kappa} at time t on a graph with joined half lines J_\kappa, which is composed of \kappa half lines with the same origin. Our analysis is based on a reduction of the walk on a half line. The idea plays an important role to analyze the walks on some class of graphs with symmetric initial states. In this paper, we introduce a quantum walk with an enlarged basis and show that W_{t,\kappa} can be reduced to the walk on a half line even if the initial state is asymmetric. For W_{t,\kappa}, we obtain two types of limit theorems. The first one is an asymptotic behavior of W_{t,\kappa} which corresponds to localization. For some conditions, we find that the asymptotic behavior oscillates. The second one is the weak convergence theorem for W_{t,\kappa}. On each half line, W_{t,\kappa} converges to a density function like the case of the one-dimensional lattice with a scaling order of t. The results contain the cases of quantum walks starting from the general initial state on a half line with the general coin and homogeneous trees with the Grover coin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.