Abstract
The Szász–Mirakyan operator is known as a positive linear operator which uniformly approximates a certain class of continuous functions on the half line. The purpose of the present paper is to find out limiting behaviors of the iterates of the Szász–Mirakyan operator in a probabilistic point of view. We show that the iterates of the Szász–Mirakyan operator uniformly converge to a continuous semigroup generated by a second-order degenerate differential operator. A probabilistic interpretation of the convergence in terms of a discrete Markov chain constructed from the iterates and a limiting diffusion process on the half line is captured as well.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have