Abstract

The limit strains of dual-phase steels DP600 and 800 were evaluated in this work with a localization model formulated in plane-stress conditions using elasto-plastic constitutive equations. In this model, a geometrical imperfection parameter is defined from the sheet nominal thickness, initial ferrite grain size and average surface roughness. The proposed identification procedure provided a more physically meaning for this parameter and at best more conservative predictions in the drawing Forming Limit Curve (FLC) range of both investigated dual-phase steels. Nevertheless, the corresponding limit strains in the biaxial stretching region are underestimated with the present theoretical model. Thus, more detailed anisotropic yield function and hardening descriptions must be implemented to improve the accuracy of the FLC prediction of advanced high strength steels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call