Abstract
Abstract In this paper, we consider a class of biological invasion model with density-dependent migrations and Allee effect, which is reduced to one ordinary differential form via the travelling wave solution ansatz. For the corresponding planar system, we firstly obtain the first several weak focal values of its one equilibrium by computing the singular point quantities, then determine the existence of one stable limit cycle from its Hopf bifurcation. Thus a special periodic travelling wave solution which is isolate as a limit is obtained, and it corresponds to the particular real patterns of spread during biological invasions, which is an interesting discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.