Abstract

We report a new result on the traveling wave solutions of a biological invasion model with density-dependent migrations and Allee effect. It has been shown in the literature that such a model can exhibit one periodic wave solution by using Hopf bifurcation theory. In this paper, global bifurcation theory is applied to prove that there exists maximal one periodic solution which can be reached in a large feasible parameter regime. The basic idea used in our technique is to examine the monotonicity of the ratio of related Abelian integrals. Especially, the existence condition for the solution near a homoclinic loop is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.