Abstract

Traditionally, application of the conventional logarithmic spiral in limit equilibrium (LE) analyses has been limited to homogenous materials. Herein, a modification of the conventional logarithmic spiral LE approach is proposed to account for transitions in soil conditions and provide insight into the internal statics associated with this approach, termed the compound log-spiral (CLS). Comparing both factor of safety (FS) and failure surfaces for a range of frictional strength combinations, the CLS approach demonstrates good agreement with results derived from both generalized, commercially available rigorous LE analyses and finite element analyses. The utility of the CLS method is further demonstrated through an example where the stability of a heavily stratified seacliff is considered. The proposed method satisfies equilibrium at a limit state without resorting to internal statistical assumptions associated with traditional LE approaches. Furthermore, it enables the explicit determination of internal statics, such as inter-slice shear forces, inter-slice normal forces, inter-slice angle, line of thrust, and normal stress distributions, which is a less-than-trivial task for the complex slip surface geometry realized in heterogeneous slope failures. Subsequently, the reasonableness of results could be assessed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.