Abstract

The paper presents results obtained for limit-cycle oscillations (LCOs) in high-aspect-ratio wings caused by structural and aerodynamic nonlinearities. The analysis is based on geometrically exact structural analysis and finite-state unsteady aerodynamics with stall. The results indicate that stall limits the amplitude of post-flutter unstable oscillations. At speeds below the linear flutter speed, LCOs can be observed if the stable steady state is disturbed by a finite-amplitude disturbance. A critical disturbance magnitude is required at a given speed and a critical speed is required at a given disturbance magnitude to initiate LCOs. The LCO initiation mechanism can be attributed to the change in structural characteristics of the wing with deformation. It is also observed that the LCO gets increasingly complex with increasing speed. Period doubling is observed at low speeds and as the speed increases the oscillations lose periodicity and become chaotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.