Abstract

Limit cycle, or self-oscillations, can occur in a variety of NEMS devices illuminated within an interference field. As the device moves within the field, the quantity of light absorbed and hence the resulting thermal stresses changes, resulting in a feedback loop that can lead to limit cycle oscillations. Examples of devices that exhibit such behavior are discussed as are experimental results demonstrating the onset of limit cycle oscillations as continuous wave (CW) laser power is increased. A model describing the motion and heating of the devices is derived and analyzed. Conditions for the onset of limit cycle oscillations are computed as are conditions for these oscillations to be either hysteretic or nonhysteretic. An example simulation of a particular device is discussed and compared with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call