Abstract

The paper treats the question of the existence of limit cycleoscillations of prototypical aeroelastic wing sections with structuralnonlinearity using the describing function method. The chosen dynamicmodel describes the nonlinear plunge and pitch motion of a wing. Themodel includes an asymmetric structural nonlinearity in the pitchdegree-of-freedom. The dual-input describing functions of thenonlinearity are derived for the limit cycle analysis. Analyticalexpressions for the average value, and the amplitude and frequency ofoscillation of pitch and plunge responses are obtained. Based on ananalytical approach as well as the Nyquist criterion, stability of thelimit cycles is examined. Numerical results are presented for a set ofvalues of the flow velocities and the locations of the elastic axiswhich show that the predicted limit cycle oscillation amplitude andfrequency as well as the mean value are quite close to the actualvalues. Furthermore, for the chosen model with linear aerodynamics, itis seen that the amplitude of the pitch limit cycle oscillation does notalways increase with the flow velocity for certain elastic axislocations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call