Abstract

Limit cycle oscillation (LCO) detonation wave behaviors are presented and analyzed for test times exceeding 20 s in a water-cooled rotating detonation engine (RDE). LCO detonation waves exhibit cyclic acceleration and deceleration, resulting in oscillating wave spacing at unique process conditions. In previous RDE studies, similar behaviors have been studied as microsecond-scale instabilities leading to ascending or descending modal transitions. In the current work, however, LCO waves are considered a persistent wave mode, occupying unique portions of the operational envelope adjacent to those of their equally spaced counterparts. These occurrences of LCO waves are repeatable, enduring behaviors. A method to generate shifted contour surfaces specifically intended to extract and analyze wave spacing variation through time, termed limit cycle oscillation visualization (LCOV) surfaces, is presented. LCOV surfaces transform data into the reference frame of a primary traveling wave and are used to analyze quasi-steady, short-timescale, and transitional LCO modes. Results are leveraged to understand the relationship between fill height, wave strength, local wave acceleration, and subsequent LCO wave spacing for individual wave sets. Quasi-steady LCO waves display wave spacing oscillations between equal spacing values associated with ±1 wave across runs exceeding 18 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.