Abstract
We study the expansions of the first order Melnikov functions for general near-Hamiltonian systems near a compound loop with a cusp and a nilpotent saddle. We also obtain formulas for the first coefficients appearing in the expansions and then establish a bifurcation theorem on the number of limit cycles. As an application example, we give a lower bound of the maximal number of limit cycles for a polynomial system of Liénard type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.