Abstract

The paper is devoted to a numerical Limit Analysis of a hollow spheroidal model with a Drucker–Prager solid matrix, for several values of the corresponding friction angle ϕ. In the first part of this study, the static and the mixed kinematic 3D-codes recently evaluated in [1] are modified to use the geometry defined in [2] for spheroidal cavities in the context of a von Mises matrix. The results in terms of macroscopic criteria are satisfactory for low and medium values of ϕ, but not enough for ϕ=30° in the highly compressive part of the criterion. To improve these results, an original mixed approach, dedicated to the axisymmetric case, was elaborated with a specific discontinuous quadratic velocity field associated with the triangular finite element. Despite the less good conditioning inherent to the axisymmetric modelization, the resulting conic programming problem appears quite efficient, allowing one take into account numerical discretization refinements unreachable with the corresponding 3D mixed code. After a first validation in the case of spherical cavities whose exact solution is known, the final results for spheroidal voids are given for three usual values of the friction angle and two values of the cavity aspect factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.