Abstract
Broken stick analysis is a widely used approach for detecting unknown breakpoints where the association between measurements is nonlinear. We propose LIMBARE, an advanced linear mixed-effects breakpoint analysis with robust estimation, especially designed for longitudinal ophthalmic studies. LIMBARE accommodates repeated measurements from both eyes and over time, and it effectively addresses the presence of outliers. The model setup of LIMBARE and the computing algorithm for point and confidence interval estimates of the breakpoint were introduced. The performance of LIMBARE and other competing methods was assessed via comprehensive simulation studies and application to a longitudinal ophthalmic study with 216 eyes (145 subjects) followed for an average of 3.7 ± 1.3years to examine the longitudinal association between structural and functional measurements. In simulation studies, LIMBARE showed the smallest bias and mean squared error for estimating the breakpoint, with an empirical coverage probability of corresponding confidence interval estimates closest to the nominal level for scenarios with and without outlier data points. In the application to the longitudinal ophthalmic study, LIMBARE detected two breakpoints between visual field mean deviation (MD) and retinal nerve fiber layer thickness and one breakpoint between MD and cup-to-disc ratio, whereas the cross-sectional analysis approach detected only one and none, respectively. LIMBARE enhances breakpoint estimation accuracy in longitudinal ophthalmic studies, and the cross-sectional analysis approach is not recommended for future studies. Our proposed method and companion R package provide a valuable computational tool for advancing longitudinal ophthalmology research and exploring the association relationships among ophthalmic variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.