Abstract

Land mammals support and move their body using their musculoskeletal system. Their musculature usually presents varying adaptations with body mass or mode of locomotion. Rhinocerotidae is an interesting clade in this regard, as they are heavy animals potentially reaching three tons but are still capable of adopting a galloping gait. However, their musculature has been poorly studied. Here we report the dissection of both forelimb and hindlimb of one neonate and one adult each for two species of rhinoceroses, the Indian rhinoceros (Rhinoceros unicornis) and the white rhinoceros (Ceratotherium simum). We show that their muscular organisation is similar to that of their relatives, equids and tapirs, and that few evolutionary convergences with other heavy mammals (e.g. elephants and hippopotamuses) are present. Nevertheless, they show clear adaptations to their large body mass, such as more distal insertions for the protractor and adductor muscles of the limbs, giving them longer lever arms. The quantitative architecture of rhino muscles is again reminiscent of that of horses and tapirs, although contrary to horses, the forelimb is much stronger than the hindlimb, which is likely due to its great role in body mass support. Muscles involved mainly in counteracting gravity (e.g. serratus ventralis thoracis, infraspinatus, gastrocnemius, flexores digitorum) are usually highly pennate with short fascicles facilitating strong joint extension. Muscles involved in propulsion (e.g. gluteal muscles, gluteobiceps, quadriceps femoris) seem to represent a compromise between a high maximal isometric force and long fascicles, allowing a reasonably fast and wide working range. Neonates present higher normalized maximal isometric force than the adults for almost every muscle, except sometimes for the extensor and propulsor muscles, which presumably acquire their great force-generating capacity during the growth of the animal. Our study clarifies the way the muscles of animals of cursorial ancestry can adapt to support a greater body mass and calls for further investigations in other clades of large body mass.

Highlights

  • Land mammals must support and move the weight of the entire body with their limbs, driven by the muscle-tendon units (e.g., Hildebrand, 1982; Biewener & Patek, 2018)

  • We report on the quantitative architecture of the limb muscles of our four specimens

  • The serrati ventrales could not be separated into the pars cervicis (SVC) and the pars thoracis (SVT) in both neonates but were distinct in both adults

Read more

Summary

Introduction

Land mammals must support and move the weight of the entire body with their limbs, driven by the muscle-tendon units (e.g., Hildebrand, 1982; Biewener & Patek, 2018). Ungulates vary greatly in terms of mass and general proportions (e.g. a hippopotamus vs a giraffe vs a gazelle, Wilson & Mittermeier, 2011) Their limb muscles vary in organisation (i.e. qualitative myology, notably where each muscle inserts on the bones), architecture (i.e. quantitative geometry of muscle fascicles, including e.g. fascicle length and pennation angle) and their general functional roles (Hildebrand et al, 1985; Biewener & Patek, 2018). This is useful for cursorial animals which rely on speed, but less useful for heavy animals (i.e. several tons) which counteract their body weight with large moments and forces (Biewener, 1989; Biewener & Patek, 2018)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call