Abstract
The kinematics of each joint of the guinea pig Cavia porcellus were studied during the locomotor cycle at increasing speed by high-speed cinefluorography. The main objective was to reveal the functional specific features of these structural elements in each dynamic phase of the cycle and also which limb joints are important during the increase of animal speed. Most of the analysed angles in C. porcellus were affected as the speed increased, both in trot and gallop. However, only a few of them were correlated with speed. There were also differences with respect to symmetrical or asymmetrical gaits. Both pairs of limbs responded differently to the increase of speed; while the forelimb joints modified the duration of their action (frequency) more than the amplitude (stride length), the hindlimbs acted inversely. The movements of the joints during the stance phase changed dramatically with speed, particularly in the hindlimb. At knee level, the flexion amplitude increases to maintain the stiffness of the leg spring, a principle previously discussed as essential for the running process. In the swing phase, inertial effects are the main constraints and, as in the stance phase, the knee joint in the swing phase is correlated with speed both during trot and gallop, confirming the major importance of this joint to increasing speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.