Abstract

We develop second order asymptotic results for likelihood‐based inference in Gaussian non‐linear regression models. We provide an approximation to the conditional density of the maximum likelihood estimator given an approximate ancillary statistic (the affine ancillary). From this approximation, we derive a statistic to test an hypothesis on one component of the parameter. This test statistic is an adjustment of the signed log‐likelihood ratio statistic. The distributional approximations (for the maximum likelihood estimator and for the test statistic) are of second order in large deviation regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.