Abstract

Normal nonlinear regression models are applied in some areas of the sciences and engineering to explain or describe the phenomena under study. However, it is well known that several phenomena are not always represented by the normal model due to lack of symmetry or the presence of heavy- and light-tailed distributions related to the normal law in the data. This paper proposes an extension of nonlinear regression models using the skew-scale mixtures of normal (SSMN) distributions proposed by Ferreira et al. (2011). This class of models provides a useful generalization of the symmetrical nonlinear regression models since the random term distributions cover both asymmetric and heavy-tailed distributions, such as the skew-t-normal, skew-slash and skew-contaminated normal, among others. An expectation–maximization (EM) algorithm for maximum likelihood (ML) estimates is presented and the observed information matrix is derived analytically. Some simulation studies are presented to examine the performance of the proposed methods, with relation to robustness and asymptotic properties of the ML estimates. Finally, an illustration of the method is presented considering a dataset previously analyzed under normal and skew-normal (SN) nonlinear regression models. The main conclusion is that the ML estimates from the heavy tails SSMN nonlinear models are more robust against outlying observations compared to the corresponding SN estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.