Abstract
ObjectivePreeclampsia (PE) is a pregnancy-specific syndrome. Ligustrazine (LSZ) is involved in hypoxia/reoxygenation (H/R)-treated trophoblast cell regulation, but its mechanism remains elusive. This study explored the mechanism of LSZ in H/R-treated trophoblast cells to provide a theoretical basis for the new treatment method development for PE. MethodsH/R HTR8/SVneo cell model was established for PE simulation to some extent. Trophoblast cell proliferation, apoptosis rate, migration, and invasion were detected by MTT assay, flow cytometry, scratch test, and Transwell assay. miR-27a-3p expression in trophoblast cells was detected by RT-qPCR. Binding sites between miR-27a-3p and ATF3 were predicted using Starbase and verified by dual-luciferase reporter assay. Activating transcription factor 3 (ATF3), β-catenin, Cyclin D1, and c-Myc protein levels were examined using Western blot. After LSZ treatment, H/R-induced HTR8/SVneo cells were delivered with miR-27a-3p mimic or ATF3 siRNA to verify their roles in HTR8/SVneo cells. ResultsLSZ facilitated the proliferation, migration, and invasion of trophoblast cells and inhibited apoptosis. miR-27a-3p was elevated in H/R-induced HTR8/SVneo cells and miR-27a-3p overexpression annulled the effect of LSZ on trophoblast cells. miR-27a-3p targeted ATF3. ATF3 silencing averted the property of LSZ on trophoblast cells. Wnt/β-catenin pathway-related proteins were repressed in H/R-induced HTR8/SVneo cells, and LSZ activated the Wnt/β-catenin pathway by promoting ATF3 expression. ConclusionLSZ mediated the Wnt pathway by regulating the miR-27a-3p/ATF3 axis, thus promoting the proliferation and migration of trophoblast cells. The protective mechanism of LSZ showed the potential application value in the treatment of PE.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have