Abstract

ABSTRACT Lignocellulosic wastes, rice straw, sugarcane bagasse, rice bran and sawdust, and pure commercial carboxymethyl cellulose (CMC) and xylan were used as substrates to cultivate cellulolytic fungus, Aspergillus flavus KUB2, in submerged fermentation at 30°C. Of all the substrates, sugarcane bagasse was a good source for the production of cellulolytic and also hemicellulolytic enzymes. The maximum activities of endoglucanase (CMCase), total cellulase (FPase) and xylanase using sugarcane bagasse as substrate were 8%, 75% and 165%, respectively, higher than those of the commercial substrates. The time course determination of enzyme production revealed that the highest CMCase (1.27 U/ml), FPase (0.72 U/ml) and xylanase (376.81 U/ml) activities were observed at 14 days of fermentation. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analyses confirmed the efficient structural alteration of sugarcane bagasse caused by enzymatic actions during A. flavus KUB2 cultivation. Based on the results of the hydrolytic enzyme activities, FTIR and SEM, A. flavus KUB2 is suggested as an efficient hydrolytic enzymes producer and an effective lignocellulose degrader, while sugarcane bagasse can be applied as a low-cost carbon source for the economical production of lignocellulose hydrolytic enzymes by A. flavus KUB2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call