Abstract

On modern vehicles, the demand is made to be in every respect as efficient as possible. A technical method to increase energetic efficiency is to reduce the vehicle mass through the implementation of lightweight construction measures. The energy consumption decreases by that and the vehicle dynamics behavior of conventionally and alternatively respectively electrically powered vehicles increases. In the department Lightweight and Hybrid Design Methods of the Institute of Vehicle Concepts in Stuttgart in collaboration with 3A Composite Core Materials, a method which allows to realize sandwich structures for automotive structural applications analytically and conceptually, is developed. The development method based on material and component testing and material values would be determined at different loads, for example in pressure and in-plane tests. These values are transmitted into the analytical determination of so called failure mode maps to derive appropriate sandwich structures. With novel sandwich structures the objectives of high structural stiffness and strength are tracked, as well as a high level of energy absorption potential. By function integrating the potential of lightweight construction, depending on the energy absorption per structural weight, can be further increased. Accompanying tests on generic structures are made to validate the failure behavior. Also the influence of core material on the deformation behavior is examined. The results from the tests are transferred to a vehicle front structure of a planned lightweight vehicle of class L7E called "Safe Light Regional Vehicle" (SLRV). The behavior of the structure is examined in static and dynamic tests. The energy absorbing capacity can be further increased by geometric optimization and the use of different core materials. The research on sandwich materials is part of the research project Next Generation Car (NGC) of the DLR and represents in terms of the new vehicle concept SLRV in sandwich design a novel vehicle concept of this joint project.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call