Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To achieve efficient and scalable AD auto-detection based on structural Magnetic Resonance Imaging (sMRI), a lightweight neural network using multi-slice sMRI is proposed in this paper. The backbone for feature extraction is based on ShuffleNet V1 architecture, which is effective for overcoming the limitations posed by limited sMRI data and resource-restricted devices. In addition, we incorporate Efficient Channel Attention (ECA) to capture cross-channel interaction information, enabling us to effectively enhance features of disease associated brain regions. To optimize the model, we employ both cross entropy loss and triplet loss functions to constrain the predicted probabilities to the ground-truth labels, and to ensure appropriate representation of distances between different classes in the learned features. Experimental results show that the classification accuracies of our method for AD vs. CN, AD vs. MCI, and MCI vs. CN classification tasks are 95.00%, 87.50%, and 85.62% respectively. Our method utilizes only 3.42 M parameters and 6.08G FLOPs, while maintaining a comparable level of performance compared to the other 5 latest lightweight methods. This model design is computationally efficient, allowing it to process large amounts of data quickly and accurately in a timely manner. Additionally, it has the potential to advance the intelligent detection of Alzheimer's disease on devices with limited computing capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.