Abstract
Structural magnetic resonance imaging (MRI) of brain tissue loss and physiological imaging of regional cerebral blood flow (rCBF) can provide complimentary information for the characterization of brain disorders, such as Alzheimer's disease (AD) but studies into gains in classification power for AD using these image modalities jointly have been limited. Our aim in this study was to determine the joint contribution of structural and perfusion-weighted imaging for the classification of AD in a cross-sectional study using an integrated multimodality MRI processing framework and a cortical surface-based analysis approach. We used logistic regression analysis to determine sequentially the value of cortical thickness, rCBF, and cortical thickness and rCBF jointly for classification for diagnosis of AD compared to controls. We further tested the extent to which cortical thinning and reduced rCBF explain individually or together variability in dementia severity. Separate analysis of structural MRI and perfusion-weighted MRI data yielded the well-established pattern of cortical thinning and rCBF reduction in AD, affecting predominantly temporo-parietal brain regions. Using structural MRI and perfusion-weighted MRI jointly indicated that cortical thinning dominated the classification of AD and controls without significant contributions from rCBF. However there was also a positive interaction between reduced rCBF and cortical thinning in the right superior temporal sulcus, implying that structural and physiological brain alterations in AD can be complementary. Compared to reduced rCBF, regional cortical thinning better explained the variability in dementia severity. In conclusion, structural brain alterations compared to physiological variations are the dominant features of MRI in AD.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.