Abstract

This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy (93%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$93\\%$$\\end{document}). Despite these promising findings, a limitation of the study lies in the experiment for man’s data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework’s impact and ultimately aim to improve health outcomes/health service optimisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.