Abstract
Aiming to the lightweight design of the long glass fiber reinforced thermoplastic (LGFT) composite wheel, this paper constructs the design process and the strength analysis method of long glass fiber reinforced thermoplastic wheel. First, the multi-objective topology optimization under multiple design spaces and multiple loading cases is conducted to obtain the robust structure, where the complicated ribs generated in design spaces are quite distinct from conventional steel or aluminum alloy wheel. The effects of weighting factors of two objectives and three loading cases on the topological results are discussed. And the long glass fiber reinforced thermoplastic wheel including the aluminum alloy insert is also designed in detail based on the concept structure and molding process. The novel metallic insert molded-in is another typical feature of long glass fiber reinforced thermoplastic wheel. Capturing the material anisotropy, the strength performances of long glass fiber reinforced thermoplastic wheel are simulated by using the finite element analysis method. The results show that there is a larger safety margin than the baseline wheel based on the maximum stress failure criterion. The long glass fiber reinforced thermoplastic wheel of 5.59 kg saves 22.3% weight compared to the aluminum alloy baseline. For the increasing requirement of automotive components lightweight design, the method and consideration in this paper may also provide some ways for the design and strength analysis of other carrying structures made of thermoplastic composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.