Abstract

Dense video captioning (DVC) aims at generating description for each scene in a video. Despite attractive progress for this task, previous works usually only concentrate on exploiting visual features while neglecting audio information in the video, resulting in inaccurate scene event location. In this article, we propose a novel DVC model named CMCR, which is mainly composed of a cross-modal processing (CM) module and a commonsense reasoning (CR) module. CM utilizes a cross-modal attention mechanism to encode data in different modalities. An event refactoring algorithm is proposed to deal with inaccurate event localization caused by overlapping events. Besides, a shared encoder is utilized to reduce model redundancy. CR optimizes the logic of generated captions with both heterogeneous prior knowledge and entities' association reasoning achieved by building a knowledge-enhanced unbiased scene graph. Extensive experiments are conducted on ActivityNet Captions dataset, the results demonstrate that our model achieves better performance than state-of-the-art methods. To better understand the performance achieved by CMCR, we also apply ablation experiments to analyze the contributions of different modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.