Abstract
Video understanding has achieved great success in representation learning, such as video caption, video object grounding, and video descriptive question-answer. However, current methods still struggle on video reasoning, including evidence reasoning and commonsense reasoning. To facilitate deeper video understanding towards video reasoning, we present the task of Causal-VidQA, which includes four types of questions ranging from scene description (description) to evidence reasoning (explanation) and commonsense reasoning (prediction and counterfactual). For commonsense reasoning, we set up a two-step solution by answering the question and providing a proper reason. Through extensive experiments on existing VideoQA methods, we find that the state-of-the-art methods are strong in descriptions but weak in reasoning. We hope that Causal-VidQA can guide the research of video understanding from representation learning to deeper reasoning. The dataset and related resources are available at https://github.com/bcmi/Causal-VidQA.git.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.