Abstract
Providing security to smart city networks is one of the challenging and demanding tasks in the present days, due to its increased utilization in smart intelligent transportation systems. For this purpose, there are various security protocols and mechanisms that have been developed in the existing works, which targets to establish the reliable and secured communication in smart city networks. However, it limits the major issues of increased computational cost, communication cost, storage overhead, and reduced efficiency. In order to solve these problems, the proposed work intends to design an intelligent security framework by using the Light-weight Cryptography based Communication Model (LCCM). Proposed framework includes the modules of setup initialization, vehicle registration, authentication, key generation, encryption, and decryption. Here, the Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications are performed with reduced cost complexity. For guaranteeing the security of networks, the random value-based key generation, data encryption, and decryption processes are performed. During the performance analysis, various evaluation measures have been used to assess the results of both convention and proposed security protocols. This paper presented a new methodology named as, LCCM for enhancing the security of smart city transportation networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Recent and Innovation Trends in Computing and Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.