Abstract

The paper deals with the development of an innovative Portland-free lightweight structural plaster to improve the seismic performance and the energy efficiency of poor quality stone masonry buildings. In particular, one-part alkali-activated slag-based mortars were manufactured with different lightweight glass aggregate contents to be mechanically compatible with historic stone walls (28-day compressive strength up to 8 MPa) and to serve as a thermo-insulating layer (specific mass lower than 1000 kg/m3). Results indicate that the Portland-free alkali activated-based plaster manufactured with expanded glass aggregates and air entraining agent is able to provide a 28-day compressive strength equal to 8 MPa and a thermal conductivity of 0.35 W/mK due to density close to 700 kg/m3. Moreover, by using methylcellulose (MC), modified starch (MS), polypropylene fibers, shrinkage reducing admixture (SRA) and silane-based surface treatment, it is possible to ensure an excellent adhesion to the substrate, the absence of micro-cracks and detachments and a very low water absorption coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.