Abstract
The article focus on the development of a one-part alkali activated slag-based lightweight plaster for seismic retrofitting and energy upgrading of poor-quality stone masonry buildings. Two different alkali activated mortars were manufactured by using expanded glass aggregates and air entraining agent in order to guarantee the mechanical compatibility with historic stone walls (28-day compressive strength close to 8 MPa) and, at the same time, a low thermal conductivity by means of a low specific mass (< 1000 kg/m3). Experimental results evidenced that alkali activated plasters are able to provide a 28-day compressive strength equal to 8 MPa and a thermal conductivity of 0.35 W/mK due to density close to 700 kg/m3. Furthermore, by using methylcellulose (MC), modified starch (MS), polypropylene fibers and shrinkage reducing admixture (SRA), the shrinkage of mortars was strongly reduced and excellent adhesion to the substrate, absence of micro-cracks and detachments were achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.