Abstract

The recent observations of exotic quantum phenomena in AV3Sb5 (A = K, Rb, Cs) kagome superconductors have attracted significant attention in materials physics. Here, we propose an innovative two-frequencies laser model for ultrafast control of transient structural distortions. Using first-principles density functional theory in conjunction with the perturbative regime of nonlinear phononics, we investigate the nonharmonic potential energy, the crystal lattice dynamics and the topological properties of CsV3Sb5. We find that driving two infrared-active phonons of different frequencies promotes the desired Raman phonon vibrations, in which the displacement of Sb atoms is closely related to superconductivity. We demonstrate that the dimensional crossover and the topological nontrivial to trivial state transition of superconductor CsV3Sb5 can be triggered by ultrafast optical control. This work can be applied to other layered quantum materials and provide guidance for experiments related to photoinduced topology and superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.