Abstract

tion (AR) coatings, [7–10] and optical resonators. [11] In many cases, however, the unavailability of materials with desired refractive indices, particularly materials with very low refractive indices, prevents the implementation of optical components with very high performance. In addition, the choice of a material with desired refractive index often forces a compromise in other materials properties such as optical transmittance and electrical conductivity that are also important for most optoelectronic applications. Here, we show that oblique-angle deposition can be used to tailor the refractive index of a thinfilm material that is chosen for its desired material properties other than refractive index. The unique ability to control the refractive index of thin film materials allows one to eliminate Fresnel reflection, one of the fundamental limitations in lightextraction efficiency of light-emitting diodes (LEDs), by fabricating coatings whose refractive index gradually decreases from the refractive index of the active semiconductor layer to the refractive index of the surrounding medium. As an example of this concept, we present a six-layer graded-refractiveindex (GRIN) AR coating made entirely of a single material, indium tin oxide (ITO), chosen for its high conductivity, high optical transmittance, and low contact resistance with GaN. Each layer has a refractive index that is individually tuned to form a stack with refractive index graded from its dense ITO value down to the value close to that of air for an optimum AR performance. It is shown that GaInN LEDs with a GRIN ITOAR contact achieve a light-extraction efficiency enhancement of 24.3 % compared to the LEDs with dense ITO coating due to a strongly reduced Fresnel reflection at the ITO– air interface. Oblique-angle deposition is a method of growing porous thin films, and hence thin films with low-refractive index (lown), enabled by surface diffusion and self-shadowing effects during the deposition process. [12–16] In oblique-angle deposition, a random growth fluctuation on the substrate produces a shadow region that the incident vapor flux cannot reach, and a non-shadow region where incident flux deposits preferentially, thereby creating an oriented rodlike structure with high porosity. Figure 1 shows the cross-sectional scanning-electron microscopy (SEM) image of low-n ITO, which is electrically conductive and optically transparent in visible wavelengths, COMMUNICATION

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.