Abstract
To improve the light-extraction efficiency (LEE) of flip-chip vertical light-emitting diodes (LEDs) grown on silicon carbide (SiC) substrate, embedded photonic crystals (PhCs) were alternatively introduced into the n-GaN layer of LEDs, since etching of the SiC substrate was very difficult. The finite-difference time-domain (FDTD) method was employed to investigate the combination effects of the micro-cavity and the embedded PhCs. The influences of the PhCs configurations on the LEE of LEDs were also examined to get an optimal structure. With the optimized parameters, about 20% enhancement of LEE was achieved comparing to planar SiC substrate-based flip-chip vertical LEDs. The LEE of conventional surface PhCs LEDs and double layer PhCs LEDs were also investigated for comparison. The results indicated that LEDs with carefully designed embedded PhCs could provide more LEE than surface PhCs LEDs. The structures proposed here offered scopes for the design of high-efficiency, high-power LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.