Abstract

In this study, 4,6-Di (9H-carbazol-9-yl) pyrimidine-5-carbonitrile (C1), 4,6-bis (3,6-di-tert-butyl-9H-carbazol-9-yl) pyrimidine-5-carbonitrile (C2), 4,6-bis (3,6-dimethoxy-9H-carbazol-9-yl) pyrimidine-5-carbonitrile (C3) compounds were optimized at the B3LYP/6-31G(d) level. Energy densities of frontier molecular orbitals were investigated with molecular properties. Vertical ionization potentials (IPv), adiabatic ionization potential (IPa) (in eV), vertical electron affinity (EAv), adiabatic electron affinity (EAa), the hole reorganization energy (h )and electron reorganization energy (e ) were calculated (in eV) for C1, C2 and C3 compounds. e values of the C1 and C3 compounds are 0.29 and 0.30 eV and the h value is 0.18 and 0.20 eV, respectively. It can be said that the C1 and C3 compounds are not suitable as an electron bearing layers (ETL) material since its e values are greater than 0.276 eV and that its h value is less than 0.290 eV, so they are a suitable material for the hole bearing layers (HTL). The C2 compound is suitable for both ETL and HTL materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.