Abstract
The goal of current work is to investigate the effect of ethyl group on the electronic, photo-physical and charge transport properties of F-BODIPY, which has been explored at the molecular level after substituting ethyl group at two position of F-BODIPY molecule. In current study; optical, electronic and charge transfer properties for F-BODIPY derivatives (Comp_1, Comp_2 and Comp_3) have been theoretically investigated. All the molecules have been optimized at the ground (S0) and first excited (S1) states using density functional theory (DFT) and time dependent DFT (TD- DFT) with the hybrid functional/basis set (B3LYP /6-31G**), respectively. Effect of ethyl groups at two different positions on the electronic, optical and charge transport properties of 5,5-difluoro-1,37,9-tetramethyloctahydro-1H,5H-514-dipyrrolo[1,2-c:2′,1′-f] [1–3] diazaborinine (Comp_1) as parent molecule has been studied at molecular level. The introduction of ethyl at two positions in Comp_1 led to a red shifted absorption spectra in comparison with parent molecule in the violet region. Various properties of interest such as highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO), vertical electron affinity (EAv), adiabatic electron affinity (EAa), vertical ionization potential (IPv), adiabatic ionization potential (IPa), electron reorganization energies (λe) and hole reorganization energies (λh) were explored. Additionally, global reactivity descriptors e.g. electronic chemical potential (μ), electronegativity (χ), Electrophilicity (ω), hardness (η), softness (S) and electrophilicity index (ωi) have been calculated theoretically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.