Abstract

AbstractBiocatalytic asymmetric reduction of C=C and C=O bonds is highly attractive to produce valuable (chiral) chemicals for the fine and pharmaceutical industry, yet occurs at the expense of reduced nicotinamide adenine dinucleotide coenzyme NADPH that requires recycling. Established methods each have their challenges. Here we developed a light‐driven approach based on photosystem I (PSI) by mimicking the natural electron transfer from PSI via ferredoxin (Fd) towards ferredoxin NADP+ reductase (FNR) in vitro. Illumination with red light led to reduction of NADP+ to NADPH with a turnover frequency of 2.55 s−1 (>9000 h−1) at pH 7.5. Light‐driven NADPH regeneration by PSI‐Fd‐FNR was coupled with three oxidoreductases for asymmetric reduction of C=C and C=O bonds, reaching up to 99 % conversion with a turnover number of 3035, and retaining enantioselectivity. This study demonstrates the capacity of a PSI system to drive continuous NADPH‐dependent biocatalytic conversions with light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.