Abstract

Iron availability within the root system of plants fluctuates depending on various soil factors, which directly impacts plant growth. Simultaneously, various environmental stressors, such as high/low temperatures and high light intensity, affect plant photosynthesis in the leaves. However, the combined effects of iron nutrient conditions and abiotic stresses have not yet been clarified. In this study, we analyzed how iron nutrition conditions impact the chilling-induced damage on cucumber leaves (Cucumis sativus L.). When cucumbers were grown under different iron conditions and then exposed to chilling stress, plants grown under a high-iron condition exhibited more severe chilling-induced damage than the control plants. Conversely, plants grown under a low iron condition showed an alleviation of the chilling-induced damages. These differences were observed in a light-dependent manner, indicating that iron intensified the toxicity of reactive oxygen species generated by photosynthetic electron transport. In fact, plants grown under the low iron condition showed less accumulation of malondialdehyde derived from lipid peroxidation after chilling stress. Notably, the plants grown under the high-iron condition displayed a significant accumulation of iron and an increase in lipid peroxidation in the shoot, specifically after light-chilling stress, but not after dark-chilling stress. This indicated that increased root-to-shoot iron translocation, driven by light and low temperature, exacerbated leaf oxidative damage during chilling stress. These findings also highlight the importance of managing iron nutrition in the face of chilling stress and will facilitate crop breeding and cultivation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.