Abstract

The optics of microcrystalline silicon thin-film solar cells with integrated light trapping structures was investigated. Periodic grating couplers were integrated in microcrystalline silicon thin-film solar cells and the influence of the grating dimensions on the short circuit current and the quantum efficiency was investigated by the numerical simulation of Maxwell’s equations utilizing the finite difference time domain algorithm. The grating structure leads to scattering and higher order diffraction resulting in an increased absorption of the incident light in the silicon thin-film solar cell. The influence of the grating period and the grating height on the short circuit current and the quantum efficiency was investigated. Enhanced quantum efficiencies are observed for the red and infrared parts of the optical spectrum. Optimal dimensions of the grating coupler were obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call